# CARDINAL DIRECTIONS

BY RAFAEL LOZANO-HEMMER - RASPBERRY PI VERSION



## TABLE OF CONTENTS

| GENERAL IMPORTANT INFORMATION       | 3  |
|-------------------------------------|----|
| Technique                           | 4  |
| Description                         | 4  |
| Operation                           | 4  |
| General Artwork Behaviors           | 4  |
| Maintenance                         | 5  |
| Placement Instructions              | 5  |
| DETAILED TECHNICAL INFORMATION      | 6  |
| Normal Software Operation           | 7  |
| Manual Software Calibration         | 8  |
| Admin HotKeys                       | 11 |
| Debug Mode                          | 12 |
| Motor Adjustments                   | 13 |
| Adjusting Reactivity                | 14 |
| Preliminary Troubleshooting Steps   | 16 |
| Troubleshooting Assistance          | 18 |
| Support (Contact Us)                | 19 |
| APPENDIX I - INSTALLATION           | 20 |
| Description of Components           | 21 |
| Wiring Diagrams and Connections     | 22 |
| APPENDIX II - TECHNICAL DATA SHEETS | 23 |
| Power Supply                        | 24 |
| Metal Stand                         | 25 |
| Metal Head                          | 25 |
| Raspberry Pi and Software           | 27 |
| microSD Card                        | 28 |
| Custom Video Cable                  | 29 |
| Printed Circuit Board               | 30 |
| Schematics                          | 32 |
| BOM                                 | 33 |
| Motion Sensor                       | 35 |
| Motor Driver                        | 36 |
| Stepper Motor                       | 37 |
| IR Interrupter                      | 40 |
| IR Sensor                           | 42 |

| IR Sensor Support Bracket                  | 43 |
|--------------------------------------------|----|
| Slip Ring                                  | 44 |
| Custom Shaft                               | 45 |
| Gear Head                                  | 46 |
| Timing Belt Pulley                         | 47 |
| Timing Belt                                | 48 |
| Belt Tightener                             | 49 |
| Display                                    | 50 |
| Display Stand                              | 57 |
| APPENDIX III - ASSEMBLY OF THE PIECE       | 59 |
| APPENDIX IV - REPAIRS/ADVANCED MAINTENANCE | 64 |
| APPENDIX V - PACKING                       | 65 |
|                                            |    |

## **GENERAL IMPORTANT INFORMATION**

This short section must be read for proper operation.

## **CARDINAL DIRECTIONS (2010)**

#### BY RAFAEL LOZANO-HEMMER

## Technique

Monitor, stepper motor, Raspberry Pi, motion sensors, custom electronics, stainless steel stand.

## Description

Cardinal Directions, is a kinetic sculpture which consists of a surveillance monitor that displays an extract of Vicente Huidobro's poem "Altazor" (1919-1931). Referring to the geography of his native Chile, Huidobro wrote "The four cardinal directions are three: North and South". When a presence is detected by infrared sensors, the monitor starts to rotate. As the poem is "geolocated" it always aligns itself to the cardinal points, and the public must walk around the piece in order to read it, like a kind of periscope.

## Operation

Please refer to <u>Appendix I - Installation</u> for detailed system information and wiring diagram. Ensure the artwork is well connected to a power source.

- 1. To turn the piece **ON**, flip the small switch on the side of the board underneath the circuit to the labeled "on" position. The Raspberry Pi will boot up and the display screen will begin to show information within 10 seconds.
- 2. To turn the piece **OFF**, flip the switch described above to the labeled "off" position. Wait about 20 seconds until everything has finished the shutdown routine.

#### **General Artwork Behaviors**

When a person is detected moving near the piece the motor will rotate the display screen to different cardinal directions. If no movement is detected for a certain amount of time the piece will go into "idle mode". In this mode the display will turn off and rotate into its "home" position.

#### Maintenance

Please do not clean the display's glass surface with Windex or soap. Use a lint-free cloth and LCD screen liquid cleaner, such as Kensington Screen Guardian found in most computer stores. Blowing compressed air on the motor and rotation components can prevent the accumulation of dust which may hinder movement.

Note the texture of the display case is aging in a particular manner: it will get stickier over time. While the case should be typically cleaned with a slightly humid soft cloth, it may start to reveal scratches and different coloured (or textured) patches. The artist considers that as a regular patine of the material, there are ways to remove the sticky texture, but we recommend waiting a maximum of time before doing so. Contact the studio if you are interested in exploring options for removal.

The metal support structure can be cleaned with regular all-purpose cleaner. Do not use harsh cleaners or rough sponges. Tough stains can be removed with a cotton rag and a small amount of acetone. Wear gloves when cleaning the stand or touching the display.

We recommend cleaning the piece at least every two months.

#### **Placement Instructions**

The piece should not be closer than 2 meters from any wall as this will hinder people from walking around the piece. Because the piece uses passive infrared sensors, any human size infrared light variation will trigger the system and, ultimately, the artwork rotation. If such behavior is noticed, check to see if a large sunny window, heater, fireplace etc. is in a 5 meter range of the piece. Try moving the piece further away from those elements.

The piece can be placed facing any direction: the software will later be used to set the north cardinal direction.

Make sure the metal base is leveled: adjust the length of all four feet by loosening the set-screws and sliding the inner cylinder in or out.

Use a cable channel or tape to secure the power cable running from the piece to the wall plug.

Once the sculpture is in position, confirm the position of true North and proceed to calibrate the motor's North position following the instructions in the <u>Motor Adjustments</u> section.

## **DETAILED TECHNICAL INFORMATION**

#### Normal Software Operation

When the Raspberry Pi is turned on it should automatically launch the software and begin running. The initial startup screen of the Raspberry Pi should look like the image below labeled "Initial startup screen".

Once the Raspberry Pi has booted up the display should look like the image below labeled "Software running properly".

The piece should then run normally without any further actions necessary. When moving towards a specific direction the abbreviation associated with that direction should light up slightly. When movement is not happening near the piece it will eventually enter "idle" mode in which the display is turned off and rotated to its "home" position. Moving near the piece will re-engage the software.



Initial startup screen

Software running properly

#### **Manual Software Calibration**

The following operations require the keyboard's USB dongle to have been inserted into the Raspberry Pi prior before turning the artwork on in order to properly access the GUI.

If the artwork doesn't react properly to someone's presence, there are two presets to be tried: a more reactive mode, preferred in sunnier rooms - even if we must avoid direct sunlight near the artwork - and a quieter mode preferred in a more typical room. To trigger such presets, press either on the key **8** (more reactive) or key **9** (less reactive) on the keyboard. For details on adjusting the reactivity of the piece see the section titled <u>Adjusting Reactivity</u>.

These general hotkey may be useful

- Pressing key **g** will make the GUI appear and hide. Upon hiding the GUI, its settings will be saved.
- Pressing key **esc** will make the app shutdown.
- Pressing key f will toggle the app between fullscreen and window mode.

When the GUI is pulled up it should look like the image below. The following sections will break down the different sections of the GUI that will be most useful in making adjustments and how to use them. The table below gives the function of every variable in the GUI.

| cardinal v49             | 0 B |
|--------------------------|-----|
| fps                      | 29  |
| 📉 showGui                |     |
| fullscreen               |     |
| 🗌 admin keys             |     |
| debug                    |     |
| language                 | 1   |
| text                     | +   |
| motorSpe <mark>ed</mark> | 510 |
| RenableMotor             |     |
| north degree             | 0   |
| idle degree              | 0   |
| motor degree             | 0   |
| mptionOnDur              | 3.5 |
| motionOffDur             | 5   |
| dleDur                   | 10  |
| offCCTVDur               | 300 |
| sensorTriggerPercent     | 90  |
| onSensorNumber           | 3   |
| OffSensorNumber          | 3   |
| powerSwitch              |     |
| Lbutton                  |     |
| go to home               |     |
| go to idle               |     |

| 0   |
|-----|
| 0   |
| 265 |
| 110 |
|     |

Screenshot of GUI

Image of the Text menu expanded

| Setting               | Description                                                                                                                                                                                                  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fps                   | Shows the frame rate per second being achieved by the piece.<br>The ideal frame rate should hover between 29-30.                                                                                             |
| showGui               | A check box to hide or show the GUI.                                                                                                                                                                         |
| fullscreen            | Sets the software to run full screen on the display. Should always be selected.                                                                                                                              |
| admin keys            | Enables certain admin actions through pressing keys. These actions are explained in the <u>Admin HotKeys</u> section.                                                                                        |
| debug                 | Checking this box shows the Debug screen which contains more information about the rotation of the poem and sensor activity. Debug mode is explained further in the section <u>Debug Mode</u> .              |
| language              | Sliding this moves between the four available languages.<br>Language can also be changed by pressing the button on the<br>bottom of the board. See the <u>Printed Circuit Board</u> section for<br>location. |
| Text - cylinderX      | Seen when Text is expanded. Should not be pressed, see image above for ideal setting                                                                                                                         |
| Text - cylinderY      | Seen when Text is expanded. Should not be pressed, see image above for ideal setting                                                                                                                         |
| Text - cylinderWidth  | Seen when Text is expanded. Should not be pressed, see image above for ideal setting                                                                                                                         |
| Text - cylinderHeight | Seen when Text is expanded. Should not be pressed, see image above for ideal setting                                                                                                                         |
| motorSpeed            | Sets the speed of the motor rotation.                                                                                                                                                                        |
| enableMotor           | Unchecking this box stops the motor from running normally.<br>Checking it allows it to proceed it's rotation                                                                                                 |
| North degree          | Reflects what degree the software has set North at. See <u>Motor</u> <u>Adjustments</u> for more detail on how to set this.                                                                                  |
| Idle degree           | Reflects what degree the motor will rotate to when in idle mode.<br>See <u>Motor Adjustments</u> for more detail on how to set this.                                                                         |
| Motor degree          | Should remain at 0.                                                                                                                                                                                          |

| Setting                | Description                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| motionOnDur            | Sets the amount of seconds that motion needs to be detected by<br>at least one sensor reporting a <b>triggered</b> state in order to prompt<br>movement from the piece. Acts in conjunction with<br><b>sensorTriggerPercent</b> to determine how long a sensor must<br>report an <b>active</b> state in order to change its state to <b>triggered</b> ,<br>see <u>Adjusting Reactivity</u> for more detail on how to set this. |
| motionOffDur           | Sets the amount of seconds where if no motion is detected the motor will stop. See <u>Adjusting Reactivity</u> for more detail on how to set this.                                                                                                                                                                                                                                                                             |
| idleDur                | Sets the amount of seconds that has to elapse with the motor stopped before the piece will enter idle mode.                                                                                                                                                                                                                                                                                                                    |
| offCCTVDur             | Sets the amount of seconds that has to elapse with the piece in idle mode before the display will turn off.                                                                                                                                                                                                                                                                                                                    |
| sensor Trigger Percent | Sets the percentage of the <b>motionOnDur</b> that a sensor must detect motion, in order to report a <b>triggered</b> state. See <u>Adjusting</u> <u>Reactivity</u> for more detail on how to set this.                                                                                                                                                                                                                        |
| onSensorNumber         | Sets the number of sensors that must report a <b>triggered</b> state for<br>motion to begin. When 2 or more are selected, at least 2 sensors<br>need to be neighbors. See <u>Adjusting Reactivity</u> for more detail on<br>how to set this.                                                                                                                                                                                   |
| offSensorNumber        | Sets the number of sensors that must not motion for the timer period set by <b>motionOffDur</b> in order for motion to stop. See <u>Adjusting Reactivity</u> for more detail on how to set this.                                                                                                                                                                                                                               |
| powerSwitch            | Clicking this button will turn off the Raspberry Pi.                                                                                                                                                                                                                                                                                                                                                                           |
| button                 | Activates or deactivates the functionality of the physical button on the custom circuit.                                                                                                                                                                                                                                                                                                                                       |
| Go to home             | If the box is checked the piece will rotate to the home position.<br>This can be used to make sure the homing sensor is functioning<br>properly.                                                                                                                                                                                                                                                                               |
| Go to idle             | If checked will force the piece into idle mode and turn off the screen.                                                                                                                                                                                                                                                                                                                                                        |

#### Admin HotKeys

The admin shortcuts can only be used if you have first pressed the **A** key or if you have checked the **admin keys** box in the GUI. Doing so unlocks the hotkeys explained in the table below. These actions are mostly used for debug purposes or main calibration: please use with precaution.

| Setting   | Description                                                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Н         | Forces the display to go to the "home" position.                                                                                                              |
| x         | Toggles the display motion On or Off.                                                                                                                         |
| Y         | Toggles the display power On or Off.                                                                                                                          |
| D         | Toggles the "debug" mode. This mode should be useful to understand the sensor's behaviors. Debug mode is explained further in the section <u>Debug Mode</u> . |
| м         | Toggles the detection via the motion sensors.                                                                                                                 |
| Space Bar | Switches between languages in sequence.                                                                                                                       |

In debug mode more detailed information about the piece is displayed visually.

- When the homing sensor is triggered: The background color will change. This is less visible on the original CRT display then it will be on an LCD display.
- **The motor's angle of rotation:** This is represented by the line that rotates within the circle in the piece seen in the screenshot below.
- **Sensor placement:** The sensors are numbered and situated on the rectangle relative to their actual positions on the board. By checking where the circle is cut out of the board you can see which sensor is which.
- Sensor State: The sensors are capable of reporting three states. Inactive, Active and Triggered, see section <u>Adjusting Reactivity</u> for a full explanation of sensor states. When the sensor is circled by a white outline it is **Inactive.** When it is circled by a filled in white circle it is Active. When surrounded by a square the sensor is **Triggered**.



Debug Mode Running Normally

#### Motor Adjustments

You will need to set the **North degree** manually in the software at the beginning of an exhibition or if the piece has been moved to face a different direction. In order to safely do that please follow the instructions below. These instructions also apply to changing the **Idle degree** of the software.

Gather the materials listed below.

- Cotton gloves to protect the piece from your skin oils.
- A compass/phone app or other way to identify where North is.
- 1. Open the GUI, follow the directions specified in <u>"Manual Software Calibration"</u>.
- 2. Disable the Motor and Enable Admin Keys, with the GUI open check the "admin keys" box and uncheck the enableMotor" box as seen in the image below. Or use the admin hotkeys to do this by first pressing A and then pressing X.
- 3. Find North, using a compass or phone app, find which way North is.
- **4.** Move the display to face North, make sure you are wearing gloves for this step. With the motor disengaged you should be able to gently move the display to face a different direction. Move the display so that its screen is pointing towards North.
- **5.** Set the North direction in the software, once the display's face is pointing towards North press **A** to ensure admin hotkeys apply and then press the **N** key on the keyboard. You should see the word "North" snap to the front of the display. The piece is now calibrated to display directions appropriately.

Adjusting Reactivity

#### Sensor States

As mentioned in the <u>Debug Mode</u> section of the GUI the sensors are capable of reporting three states. **Inactive, Active** and **Triggered**. These definitions are important in understanding how to adjust the reactivity of the piece.

| State     | Description                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------|
| Inactive  | A sensor is not detecting any movement.                                                                     |
| Active    | A sensor has detected movement.                                                                             |
| Triggered | A sensor has been detecting movement for the <b>sensorTriggerPercent</b> of the <b>motionOnDur</b> variable |

#### Setting Movement Conditions

In order for the piece to react to movement three conditions must be met.

- 1. The number of sensors set in the variable **onSensorNumber** must report a **triggered** state.
- 2. At least two of those sensors must be neighbors.
- 3. At least one of those sensors must have detected motion for the full length of the **motionOnDur** variable.

For example given the following values:

motionOnDur: 1 sensorTriggerPercent: 40 onSensorNumber: 3

In order for the piece to begin moving 3 sensors must have all detected motion for at least 0.4 seconds. Two of those sensors must be next to each other and one of them must have detected motion for 1 second.

A lower **motionOnDur, sensorTriggerPercent and onSensorNumber** value will result in a piece more sensitive to motion and surrounding infrared light fluctuations and vice versa.

#### Setting Stop Conditions

In order for the piece to stop moving the following conditions must be met.

- 1. The number of **triggered** sensors must be less than the **offSensorNumber** variable.
- 2. The above condition has been true for as long as the time set in **motionOffDur**.

For example if the variables mentioned above have the following values:

#### motionOffDur: 2 motionOnDur: 1 sensorTriggerPercent: 80 offSensorNumber: 3

Then in order for the piece to stop moving less than 3 sensors must have detected motion for at least 0.8 seconds. When two or less sensors have detected motion for 0.8 seconds a timer begins. When that timer reaches 2 seconds the piece will stop moving if it is in motion.

## Preliminary Troubleshooting Steps

#### If the monitor is not showing an image

Make sure the piece has power. There should be an LED visible on the PCB showing it is receiving power. Make sure the power button on the monitor is pressed, the biggest button on the bottom left part of the display front face. A very dim LED should be illuminated right under the button.

Make sure the other 3 push buttons on the monitor are **NOT** pressed. Try adjusting the 1st and 2nd rotary knobs next to the monitor's power button to change the brightness and contrast.

Ensure that the SDcard on the underside of the Raspberry Pi is inserted all the way and that LED's are visible on the Raspberry Pi.

Check that the video wire from the Raspberry Pi is properly connected to the circuit board and that the video cable between the Raspberry Pi and custom circuit is plugged in. See reference images in <u>APPENDIX I: INSTALLATION</u>.

## If the custom video cable is plugged into the circuit board and Raspberry Pi but there's still no video

The custom video cable may be too firmly pressed into the 3.5 mm video port on the Raspberry Pi. Try gently unplugging the custom video cable from this end and slowly reinserting it into the port. Watch the screen for any movement or flickering. If a video signal is acquired without the cable being pressed all the way into the 3.5 mm video port it is acceptable to leave it as long as it will not be easily dislodged.

#### If the motor seems to be jittering and stuck on something

Turn the piece off and check to see that the metal strip on the gear shaft is able to slide smoothly through the homing sensor. If necessary gently readjust the homing sensor so that this is possible. Look for any other movement restriction before turning the piece back on.

#### The software is behaving strangely or not displaying the piece

Switch the piece off by turning the switch on the underside of the circuit board to the labeled "off" position. Wait for the piece to properly power down, try securing all connections and then turn the piece back on to fully reboot it.

#### The piece is moving without anyone interacting with it

Check to see if the piece is near a potentially large heat source. If so, try moving the piece further away from those elements, turning it off for five minutes and then restarting the piece. Refer to the <u>Adjusting Reactivity</u> section of the manual for information on how to make the piece less reactive.

#### If the keyboard dongle is plugged into the raspberry pi but the keyboard is not working

Restart the Raspberry Pi to allow the operating system to recognize the USB dongle. If this does not resolve the issue make sure the keyboard has batteries and is properly turned on.

### **Troubleshooting Assistance**

Prior to contacting the Antimodular Studio with a problem about your artwork, please ensure that you went through the preliminary troubleshooting steps outlined in the previous section.

The troubleshooting process will vary depending on the problem. In order to make the process easier, it is recommended that you collect and send the following information to the studio:

- Date and time when the problem first happened;
- Description of the problem;
- Actions taken so far and conclusions;
- Detailed photographs (or videos) displaying the problem;
- Detailed photographs (or videos) of the suspected faulty component;
- Detailed photographs (or videos) of the whole artwork and its surroundings;
- Personnel involved.

## Support (Contact Us)

If you would like support for the piece, please feel free to call Lozano-Hemmer's studio in Canada:

Antimodular Research 4462 rue Saint-Denis Montréal, Québec, Canada H2J 2L1 Tel 1-514-597-0917 info@antimodular.com www.antimodular.com **APPENDIX I - INSTALLATION** 

## **Description of Components**

This artwork requires the following components:

| Component             | Description                                                                                                                                                                                                     |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Supply          | Located under the metal stand, this unit feeds power to the custom circuit and whole artwork.                                                                                                                   |
| Metal Stand           | The metal base and stand on which the metal head, display stand and display are connected.                                                                                                                      |
| Metal Head            | Attaches to the stand and holds the stepper motor, IR sensor and<br>related gear shafts, a custom circuit and a Raspberry Pi. The metal<br>stand to hold the display in place is also attached to this section. |
| Raspberry Pi          | Connects to the custom circuit and runs the software used in the piece.                                                                                                                                         |
| Printed Circuit Board | Custom circuit controlling eight motion detectors, the IR Sensor and the rotation of the stepper motor.                                                                                                         |
| Stepper Motor         | Rotates the display.                                                                                                                                                                                            |
| CCTV Display          | Cathode ray tube display used to show the poem for the piece.                                                                                                                                                   |
| Display Stand         | Metal stand that bolts the display firmly into place.                                                                                                                                                           |

## Wiring Diagrams and Connections

In order for the piece to run properly, the components should be connected according to the following diagrams.



## **APPENDIX II - TECHNICAL DATA SHEETS**

## **Power Supply**

Power supply used for the entire piece. Is threaded through the hollow shaft of the stand and connects to the power port on the custom printed circuit board.

| Specification         | Details                                                                   |
|-----------------------|---------------------------------------------------------------------------|
| Input                 | 120-240V 50/60Hz 1.0A                                                     |
| Output                | 12VDC 3.3A                                                                |
| Male Barrel Connector | Inner Diameter 2.1 mm / Outer Diameter 5.5, mm<br>Positive lead on center |



## **Metal Stand**



## **Metal Head**

A custom metal frame used to hold the stepper motor, gear shaft and IR sensor in place. The bottom plate measures 16cm in length and 9.2cm in width. The height of the frame including the gear shaft is 13.5cm.



#### Raspberry Pi and Software

At the time of writing this manual, the software operating on the Raspberry Pi is coded under openFrameworks' platform on version 0.9.0 linuxarmv7l release. The software version referred to in this manual is #46 04172024 and runs on a Raspberry Pi 2 Model B. The pinout for this Raspberry Pi can be seen below.

The software cardinal\_pi is launched by the script runner.sh which will automatically attempt to restart the software every 10 seconds if it is exited for whatever reason.



Raspberry Pi 2 Model B

#### microSD Card

The Raspberry Pi contains a microSD card. It is flashed with an image of the Raspberry Pi GNU/Linux 7 Wheezy operating system and the Cardinal Directions software.

If a new microSD card is needed, ensure to use one that has the same amount of bytes or more, otherwise you won't succeed to write the disk image on the new microSD card.

| Specification             | Details                                                                                                                                                                |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer              | Lexar                                                                                                                                                                  |
| Model Name                | LMSESXX032G-B5AAA                                                                                                                                                      |
| Minimal Capacity Required | 32 000 000 000 bytes (32 GB)                                                                                                                                           |
| Class                     | Class 10 / V10                                                                                                                                                         |
| File System               | Windows FAT 32. If formatting a new card with an OSX computer, ensure to keep the card's partition map schemes as Master Boot Record, not GUID or Apple Partition Map. |

## Custom Video Cable

A custom cable connecting a female 2 pin Tyco connector to a 3.5 mm 4 pole male aux connector. This cable should not be replaced without first contacting the studio.



Custom Video Cable

Pinout

| Specification | Details                                                |
|---------------|--------------------------------------------------------|
| Video signal  | Video ring as seen in the image above labeled "pinout" |
| Ground        | Ground as seen in the image above labeled "pinout"     |

## Printed Circuit Board



Front

Back



Board circuitry

Schematics



## BOM

| Designator                                                  | Quantity | Description                                         | Part Number                                |  |  |  |  |  |  |
|-------------------------------------------------------------|----------|-----------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|
| POWER0,VIDEO<br>_IN0                                        | 2        | CONN HEADER VERT 2POS 2.54MM                        | Molex 0022232021                           |  |  |  |  |  |  |
| SLIP0                                                       | 1        | CONN HEADER VERT 6POS 2.54MM                        | TE Connectivity AMP Connectors<br>640445-6 |  |  |  |  |  |  |
| HOME_SENSOR<br>0                                            | 1        | CONN HEADER VERT 3POS 2.54MM                        | Molex 0022232031                           |  |  |  |  |  |  |
| мотоо                                                       | 1        | CONN HEADER VERT 4POS 2.54MM                        | Molex 0022272041                           |  |  |  |  |  |  |
| ENCODER0                                                    | 1        | CONN HEADER VERT 5POS 2.54MM                        | Molox 0022272051                           |  |  |  |  |  |  |
| EPIR0,EPIR1,EPI<br>R2,EPIR3,EPIR4,<br>EPIR5,EPIR6,EPI<br>R7 | 8        | Sensor PIR (Passive Infrared) 275.6"<br>(7m) Module | Zmotion ZEPIR0BAS02MODG                    |  |  |  |  |  |  |
| PCB1                                                        | 1        | RASPBERRY_PI 2                                      | Raspberry Pi SC1029                        |  |  |  |  |  |  |
| PCB2                                                        | 1        | Easyfun stepper motor driver                        | Sparkfun Electronics ROB-12779             |  |  |  |  |  |  |
| DC-DC1                                                      | 1        | DC-DC CONVERTER 3.3 v                               | Murata Power Solution<br>OKI-78SR-3.3      |  |  |  |  |  |  |
| DC-DC2                                                      | 1        | DC DC CONVERTER 5V 8W                               | Murata Power Solutions<br>OKI-78SR-5/1     |  |  |  |  |  |  |
| DC-DC3                                                      | 1        | 10W Step down adjustable switching regulator        | Dimension Engineering DE-SWADJ             |  |  |  |  |  |  |
| U\$1                                                        | 1        | SWITCH-DPDT                                         | Omron B3W-4055                             |  |  |  |  |  |  |
| U\$2                                                        | 1        | SWITCH SLIDE DPDT 200MA 30V                         | E-Switch EG2210A                           |  |  |  |  |  |  |
| R1                                                          | 1        | 82K                                                 | Yageo RC0402JR-0710KL                      |  |  |  |  |  |  |
| R2                                                          | 1        | 100k                                                | Yageo RC0402FR-07100KL                     |  |  |  |  |  |  |
| R3                                                          | 1        | TRIMMER 100 KOHM 0.15W J LEAD<br>TOP                | Bourns TC33X-2-104E                        |  |  |  |  |  |  |
| R7,R8                                                       | 2        | 215                                                 | Yageo RC0402FR-07215RL                     |  |  |  |  |  |  |
| R4,R5,R10,R11,R<br>20                                       | 4        | 1k                                                  | Yageo RC0805FR-071KL                       |  |  |  |  |  |  |
| R11                                                         | 1        | 2M                                                  | Yageo RMCF0805FT2M00                       |  |  |  |  |  |  |
| R13                                                         | 1        | 1M                                                  | Yageo RV0805FR-071ML                       |  |  |  |  |  |  |
| R14,R9,R21,R6                                               | 4        | 10k                                                 | Yageo RC0402JR-0710KL                      |  |  |  |  |  |  |
| F1                                                          | 1        | PTC RESET FUSE 6V 1.1A 0805                         | LittleFuse 0805L110SLYR                    |  |  |  |  |  |  |

| Designator | Quantity                                                        | Description                                                 | Part Number                                   |  |  |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|--|--|--|
| C1         | 1                                                               | 0.1 µF -20%, +80% 50V Ceramic<br>Capacitor                  | Samsung CL21F104ZBANNNC                       |  |  |  |  |  |  |  |  |
| C5         | 1                                                               | CAP ALUM 1UF 20% 50V RADIAL                                 | Nichicon UVP1H010MDD                          |  |  |  |  |  |  |  |  |
| D1,D2,D3   | 3                                                               | DIODE SCHOTTKY 40V 2A SMA                                   | Diodes Incorporated B240A-13-F                |  |  |  |  |  |  |  |  |
| LED2,LED1  | 2 LED GREEN CLEAR 0805 SMD Visual Communications<br>LSM0805452V |                                                             |                                               |  |  |  |  |  |  |  |  |
| Q1         | 1                                                               | N-Channel 60 V 4.1A (Ta) 2W (Ta)<br>Surface Mount SOT-223-3 | Diodes Incorporated<br>DMN6068SE-13           |  |  |  |  |  |  |  |  |
| Q3         | 1                                                               | TRANS PNP 40V 0.6A SOT23-3                                  | Onsemi MMBT4403LT1G                           |  |  |  |  |  |  |  |  |
| Q4         | 1                                                               | TRANS NPN 40V 0.2A SOT23-3                                  | Diodes Incorporated<br>MMBT3904-7-F           |  |  |  |  |  |  |  |  |
| Q5         | 1                                                               | G3VM-61ER SSR                                               | Omron G3VM-61ER                               |  |  |  |  |  |  |  |  |
|            | 5                                                               | Female Header 1x2                                           | Adam Tech RS1-02-G                            |  |  |  |  |  |  |  |  |
|            | 1                                                               | Female Header 1x3                                           | Sullins Connector Solutions<br>PPPC031LFBN-RC |  |  |  |  |  |  |  |  |
|            | 1                                                               | Female Header 1x4                                           | Sullins Connector Solutions<br>PPPC041LFBN-RC |  |  |  |  |  |  |  |  |
|            | 1                                                               | raspberry pi header                                         | SparkFun PRT-14017                            |  |  |  |  |  |  |  |  |
|            | 1                                                               | headphone male end for video                                | Same Sky SP-3541                              |  |  |  |  |  |  |  |  |
|            | 1                                                               | rca male plug                                               | SwitchCraft 3501MX                            |  |  |  |  |  |  |  |  |

A ZMOTION  $\ensuremath{\mathbb{R}}$  Detection Module II ZEPIR0BxS02MODG is used to detect when people are moving around the piece.



Figure 1. ZDMII Block Diagram (ZEPIR0BxS02MODG)

Figure 2 shows the right-angle version of the ZDMII Module.



| Specification       | Details         |
|---------------------|-----------------|
| Manufacturer Number | ZEPIR0BxS02MODG |
| Manufacturer        | Zilog           |
| Input Voltage       | 3.3 VDC         |

#### Motor Driver

A Stepper, Bipolar 6  $\sim$  30V Supply 0.75A 30V Load used to drive the stepper motor. The pinout for this part can be found below.



| Specification       | Details                  |
|---------------------|--------------------------|
| Manufacturer Number | ROB-12779                |
| Input Voltage       | 6 ~ 30VDC (9VDC nominal) |

#### **Pin Descriptions**

Let's take a look at all of the pins broken out from the A3967 IC on the Easy Driver.

#### **Board Top Pins**

If you look across the top of the board, you will see several pins.



They function as follows:

- Coil A+ H-Bridge 2 Output A. Half of connection point for bi-polar stepper motor coil A.
- Coil A- H-Bridge 2 Output B. Half of connection point for bi-polar stepper motor coil A.
- Coil B+ H-Bridge 1 Output A. Half of connection point for bi-polar stepper motor coil B.
- Coil B- H-Bridge 1 Output B. Half of connection point for bi-polar stepper motor coil B.
- PFD Voltage input that selects output current decay mode. If PFD > 0.6Vcc, slow decay mode is activated. If PFD < 0.21Vcc, fast decay mode is activated. Mixed decay occurs at 0.21Vcc
   PFD < 0.6Vcc.</li>
- RST Logic Input. When set LOW, all STEP commands are ignored and all FET functionality is turned off. Must be pulled HIGH to enable STEP control.
- ENABLE -Logic Input. Enables the FET functionality within the motor driver. If set to HIGH, the FETs will be disabled, and the IC will not drive the motor. If set to LOW, all FETs will be enabled, allowing motor control.
- MS2 -Logic Input. See truth table below for HIGH/LOW functionality.
- GND Ground.
- M+ Power Supply. 6-30V, 2A supply.

#### **Bottom Board Pins**

There are also pins across the bottom of the board. Their functions are described below.



- GND Ground.
- 5V -Output. This pin can be used to power external circuitry. 70mA max is required for Easy Driver functionality.
- SLP Logic Input. When pulled LOW , outputs are disabled and power consumption is minimized.
- MS1 Logic Input. See truth table below for HIGH/LOW functionality.
   GND Ground.
- STEP -Logic Input. Any transition on this pin from LOW to HIGH will trigger the motor to step forward one step. Direction and size of step is controlled by DIR and MSx pin settings. This will either be 0-5V or 0-3.3V, based on the logic selection.
- DIR -Logic Input. This pin determines the direction of motor rotation. Changes in state from HIGH to LOW or LOW to HIGH only take effect on the next rising edge of the STEP command. This will either be 0-5V or 0-3.3V, based on the logic selection.

## Stepper Motor

HT17-275 NEMA 17 High Torque Stepper Motor.



| Specification       | Details                 |
|---------------------|-------------------------|
| Manufacturer        | Applied Motion Products |
| Model Number        | HT17-275                |
| Maximum Radial Load | 6.6 lbs                 |
| Weight              | 0.8 lbs                 |
| Shaft Diameter      | 0.2 in                  |
| Step Angle          | 1.8 deg                 |

|          | APPROVED                                   | J. KORDIK           | J. KORDIK        | J. KORDIK           | J. KORDIK           | J. KORDIK        | J. KORDIK          | J. KORDIK            | L. LIU                  | K. KESLER                |                                    |                        |                   |           |                    |                     |                  |                |                            |                   |                  |                   | CW             |                | <b> </b>                |                   |                 | _                 | NO                               |                  | <b>10TOR</b>                             |            |                    |
|----------|--------------------------------------------|---------------------|------------------|---------------------|---------------------|------------------|--------------------|----------------------|-------------------------|--------------------------|------------------------------------|------------------------|-------------------|-----------|--------------------|---------------------|------------------|----------------|----------------------------|-------------------|------------------|-------------------|----------------|----------------|-------------------------|-------------------|-----------------|-------------------|----------------------------------|------------------|------------------------------------------|------------|--------------------|
|          | DATE                                       | 8/28/09             | 12/10/09         | 3/10/10             | 1/26/16             | 6/6/16           | 4/22/19            | 7/3/19               | 6/15/21                 | 01/18/24                 |                                    |                        |                   |           |                    |                     |                  |                |                            |                   |                  |                   | VFI & C        | <b>RED/WHT</b> |                         |                   | +               |                   | kwise) rotati<br>He motor        |                  | STEPPER <b>N</b>                         |            |                    |
| SVISIONS |                                            |                     |                  | HOLES               |                     |                  | ٩                  | LES                  | ER HOLE DEPTH           | EVISED WINDING           |                                    |                        | AGRAM             |           | (                  | 5                   |                  | 8              | <ul> <li>VELLOW</li> </ul> | YEL/WHI           |                  | LEL FULL STEP     | RED &          | YEL/WHT        | +                       | +                 |                 | +                 | UNTER-CLOC                       | DATE TITLE:      | 01/17/24                                 |            | _                  |
| RE       | DESCRIPTION                                | VITIAL RELEASE      | EVISE SPECS      | DIZE ENCODER        | ED UL TO LABE       | VISED NOTE 10    | UMENT CLEAN L      | E ENCODER HO         | WORKS, ENCOD<br>CHANGED | AFT DRAWING, RI<br>SPECS |                                    |                        | RING DI/          |           | len<br>Len         | <u>ا</u>            | )<br>୭           | 8.             | RED                        | KEU/WHI           |                  | LAR PARAL         | RIK &          | ORG/WHT        |                         | + +               |                 |                   | CCW (COI                         | NAME             | C.BREUNINGER                             |            | _                  |
|          |                                            | -                   | E.               | STANDAR             | ADD                 | R                | DOCI               | REMOV                | DRAW IN SOLID           | ARATE DUAL SH/           |                                    |                        | M                 |           | ORANO              | DRG/WHT.            | BLAC             |                |                            |                   |                  | BI-PO             | SPG. 2         | BLK/WHT        | +                       |                   | +               | +                 | wise) and<br>I seen fro <i>i</i> | 7                | D: DRAWN                                 | PRE.CHECK  | 20 ILKENTRUND      |
|          | REV.                                       | ۲                   | B                | U                   | ٩                   | ш                | u.                 | U                    | H RE-                   | J SEP                    |                                    |                        |                   |           |                    | Ŭ                   |                  |                |                            |                   |                  |                   |                | SIEP           | 0                       | ~ ~ ~             |                 |                   | V (CLOCK)                        | ANGLE PROJECTION | OTHERWISE SPECIFIE<br>ONS ARE IN MILLIME | AR: ± 0.5  | ELIMAL FLACE. ± 0. |
|          | ECO #                                      | 5976                | 6036             | 0609                | 7247                | 7446             | 8209               | 8277                 | 8675                    | 9023                     |                                    |                        |                   |           |                    |                     |                  |                |                            |                   |                  |                   |                |                |                         | -                 | C               | )                 | C                                | ed THRD.         | T UNLESS (                               | NV - ANGUL | - CNL S            |
|          | z-in <sup>2</sup> ) NOM                    | NIN (ni-zo          |                  | DED                 | 6                   | 0+50°C           | 70°C               | 0.85%                | IMATE                   |                          | HOLDING<br>TORQUE<br>(oz-in MIN)   | 62.3                   | 62.3              | 43.8      |                    |                     |                  |                |                            |                   |                  |                   |                | KHz.           | APPLIED TO              |                   |                 | CTIVE.            | IANCE LOGO,                      | 3                |                                          | 3          |                    |
|          | <sup>2</sup> (0.44 oz-in <sup>2</sup> ) N( | :m (3.39 oz-in) M   |                  | BLE SHIELDED        |                     | E: -20 TO +50 °C | -30 TO +70°C       | GE: 15 TO 85%        | APPROXIMATE             |                          | NG HOLD<br>IE 1 TORO               | .44                    | ).44              | 0.31      |                    |                     |                  |                |                            |                   |                  |                   |                | DGE AT 1KHz.   | URRENT APPLIED          |                   |                 | HS DIRECTIVE.     | COMPLIANCE                       |                  |                                          |            |                    |
|          | 82 g-cn                                    | :: 244 g-(          | ASS: B           | C 3, DOL            | MAX.                | IP. RANC         | RANGF              | DITY RAN             | 12.0 oz 1               |                          | T TORO                             |                        |                   |           |                    |                     |                  |                |                            |                   | JL 1430          |                   |                | NCE BRI        | RATED (                 |                   |                 | NT EU Ro          | SS, "RoHS                        |                  |                                          |            |                    |
|          | INERTIA:                                   | <b>TORQUE</b>       | TION CL          | IGS: ABEC           | RISE: 80°C          | TING TEN         | GF TEMP            | VE HUMIC             | T: 340 a (              | 0                        | RATED<br>CURREN<br>(Amp)           | 0.85                   | 1.70              | 1.20      |                    |                     | PHASE.           |                |                            |                   | ROVED. I         | VDC.              |                | INDUCTA        | DD, WITH                |                   |                 | H CURRE           | E ADDRE                          |                  |                                          |            |                    |
| CATION   | ROTOR                                      | DETENI              | INSULA           | BEARIN              | TEMP. I             | OPERA            | STORA              | RELATIV              | WEIGH                   |                          | 8                                  |                        |                   |           |                    |                     | <b>VEACH</b>     | SITIONS.       |                            |                   | CSA APP          | I AT 500          |                | AN A.C.        | E METHO                 |                   | TION.           | NCE WIT           | CODE.                            |                  |                                          |            |                    |
| SPECIF   |                                            |                     |                  | 1,2                 | 1,3                 |                  |                    | IAL LOAD             | OADI                    |                          | NDUCTANC<br>PER PHASE<br>(mH ±20%) | 10                     | 2.5               | 2.5       |                    |                     | CURRENT IN       | ULL STEP PO    |                            | AINUTE.           | N. UL AND        | GOHMS MIN         | IASE.          | IASE USING     | N RESISTANC             |                   | CONSTRUC        | N COMPLIA         | LOGO, AMI<br>, AND DATE          |                  |                                          |            |                    |
|          | 4                                          | N: 200              |                  | VCY: 0.09°          | <pre>': 0.09°</pre> |                  | mm T.I.R. MAX      | n MAX (0.5 kg RAD    | AAX (0.5 kg AXIAL I     |                          | PER PHASE 7                        | 6.6                    | 1.7               | 3.3       |                    | EN WISE OF ECIFIED. | TS MADE AT RATED | TWO ADJACENT F | ROR IN 360°.               | C, 60Hz FOR ONE N | WG, 7 STRAND MI  | ESISTANCE: 100 ME | ACROSS EACH PH | ACROSS EACH PH | <b>BY THE CHANGE II</b> | 'H MOTOR AT REST. | TATOR LAMINATED | MANUFACTURED      | TO INCLUDE AMP                   |                  |                                          |            |                    |
|          | NUMBER OF PHASES: 4                        | STEPS PER REVOLUTIO | STEP ANGLE: 1.8° | STEP TO STEP ACCURA | POSITION ACCURACY   | HYSTERESIS: N/A% | SHAFT RUNOUT: 0.03 | RADIAL PLAY: 0.02 mr | END PLAY: 0.08 mm A     |                          | CONNECTION                         | <b>BI-POLAR SERIES</b> | BI-POLAR PARALLEL | UNI-POLAR | NOTES LINI FSS OTH |                     | 1 MEASUREMEN     | 2 BETWEEN ANY  | 3 MAXIMUM ERI              | 4. HIPOT 500 VA(  | 5 LEADS: 8, 26 A | 6. INSULATION R   | 7 AS MEASURED  | 8 AS MEASURED  | 9 AS MEASURED           | 2 PHASES: WII     | 10. ROTOR AND S | 11. THIS MOTOR IS | 12 MOTOR LABEL<br>AMP P/N, "MA   |                  |                                          |            |                    |

REV **\_** 

BIZE DWG. NO. HT17-275 SCALE: 1:1

E.MERINO

AP: 4611110029089

ALT DWG. NO. ALT SAP:

SHEET 1 OF 2



IR Interrupter

Small custom machined metal piece used to interrupt the IR sensor and allow the motor to return to the home position. Distances are in millimeters.





## IR Sensor

Custom IR sensor circuit board using an Optical sensor slotted with PC pins.



Circuit Schematic



Completed Circuit

| Specification                      | Details                    |  |  |  |  |  |  |
|------------------------------------|----------------------------|--|--|--|--|--|--|
| Manufacturer                       | Isocom Components 2004 LTD |  |  |  |  |  |  |
| Part Number                        | H21A3                      |  |  |  |  |  |  |
| Sensing Distance                   | 3 mm.                      |  |  |  |  |  |  |
| Sensing Method                     | Through-Beam               |  |  |  |  |  |  |
| Output Configuration               | Phototransistor            |  |  |  |  |  |  |
| Current - DC Forward (If)<br>(Max) | 50 mA                      |  |  |  |  |  |  |
| Current - Collector (Ic)<br>(Max)  | 20 mA                      |  |  |  |  |  |  |
| Response Time                      | 8µs, 50µs                  |  |  |  |  |  |  |

## IR Sensor Support Bracket



Custom 90 degree bracket that allows for the IR sensor to be adjusted slightly if needed.

## Slip Ring

Allows the wires going to the display to be threaded through the custom hollow shaft and connected to the board.



| Specification           | Details   |
|-------------------------|-----------|
| Manufacturer            | Моод      |
| Model Number            | AC6023-6  |
| Channels                | 6-channel |
| Number of Revolutions   | 250 RPM   |
| Connection Cable Length | 304.8mm   |

## Custom Shaft

A hollow shaft through which the wires going to the display are threaded.

| Specification  | Details |
|----------------|---------|
| Length         | 12.5 cm |
| Outer Diameter | 12 mm   |
| Inner Diameter | 5.6 mm  |
| Material       | Steel   |

#### Gear Head

The gear head is part of the rotation mechanism in the metal head. It is attached to the custom shaft and looped around by the timing belt. One or two small holes are drilled into the face to secure the IR interrupter.



| Specification  | Details           |
|----------------|-------------------|
| Manufacturer   | Martin            |
| Part Number    | 48XL037           |
| Material       | Steel             |
| Teeth          | 48                |
| Pitch          | 0.2 in.           |
| Belt Width     | 0.3750 in.        |
| Bore Diameter  | 0.3125-1.1875 in. |
| Outer Diameter | 3.036 in.         |

## Timing Belt Pulley

A part of the rotation mechanism in the metal head. The timing belt pulley is attached to the motor shaft and used to secure the timing belt.



| Specification  | Details           |
|----------------|-------------------|
| Manufacturer   | Martin            |
| Part Number    | 28XL037           |
| Material       | Steel             |
| Teeth          | 28                |
| Pitch          | 0.2 in.           |
| Belt Width     | 0.3750 in.        |
| Bore Diameter  | 0.2500-0.9375 in. |
| Outer Diameter | 1.763 in.         |

## Timing Belt

A part of the rotation mechanism of the metal head. The belt is looped around the timing belt pulley and the gear head and pulled taut by the belt tightener. It is a PowerGrip® 9257-1373 Industrial Timing Belt - XL - Extra Light Duty



| Specification | Details     |
|---------------|-------------|
| Manufacturer  | Gates       |
| Part Number   | 136XL037    |
| Material      | Neoprene    |
| Teeth         | 68          |
| Pitch         | 0.2 in.     |
| Width         | 0.375 in.   |
| Length        | 13.6000 in. |

#### Belt Tightener

A part of the rotation mechanism of the metal head. The belt tightener sits on the Metal Head and puts tension on the timing belt. It is constructed from the following components.

- Ball Bearings
  - These allow the belt to slide smoothly and are NSK 626Z Deep Groove Ball Bearings
- Screw
  - This is the shaft of the belt tightener and is a .25-28 3.5cm stainless steel tensile strength 70. 30 mm in length.
- Nuts
  - Secures the belt tightener on the top and bottom of a metal lip in the metal head. There are two nuts, both 25-28 3.5cm stainless steel tensile strength 70.



Belt Tightener highlighted on the fame

## Display

A 5.5 inch cathode ray tube display screen model number MO557111B. In normal operation the power button should always be pressed inwards, while the camera input switch, mode switch and day/night mode switch should be in the "off" position not pressed inwards. The contrast and brightness knobs can be adjusted based on lighting conditions.



| Specification       | Details       |
|---------------------|---------------|
| Input Voltage       | 12-32 VDC     |
| Power Consumption   | 10.5 W        |
| CRT tube dimensions | 5.5" diagonal |

# **Car Rear Viewer**

# **Operating Instruction**



## 5.5-Inch Car Rear Viewer



#### **System Features**

5.5" Military-type Phosphor Cathode Ray Tube(CRT) Wide voltage input adaptability: 11~32V DC 2 channels of audio/video input, 1 channel of audio/video composite output Power/Stand-by mode option Normal/Mirror image switch Day/Night lightness option Near Sunlight-readability Double-sided PCB board for efficiently increasing anti-vibration ability (6.8G) Contrast, brightness and volume adjustment Built-in speaker Adjustable Mounting Bracket

Sun shield included

1

## SYSTEM INSTALLATION GUIDE

This monitor can be mounted by embedding to the dash area, hanging from the truck roof or seating to any position which is suitable to the driver to observe the images.

#### **Mounting monitor**

- 1. Select a position to mount the monitor
- 2. Well position the monitor support, mark the fixing hole position and drill fixing holes
- 3. See Fig.1, put spring lockwasher on mounting screw to fix the monitor support
- 4. See Fig.2, fix the monitor to the support with 4 angle adjustment screws
- 5. See Fig.3, connect cables according to port connection diagram

#### **Connecting power cable**

- 6. See Fig.4, Connect one end of the power cable(wire) to the right position on the dashboard
- 7. connect the other end of the power cable(plug) to the monitor

#### System connecting

8. See Fig.4, connect the monitor and the camera with the system connecting cable.

You can link the monitor with at most 2 channels of cameras and 1 channel of video/audio output

(AV signal cable can be selective purchase)

#### WARNING

Electrical shock or fire hazard. Do not try to service this unit yourself. Service should be handled by qualified technicians.

## PORT CONNECTION DISPLAY



- 1. Video output
- 2. Camera1 input
- 3. Camera2 input
- 4. Audio output
- 5. To exterior speaker
- 6. Normal/Mirror image switch

#### **Detail of ports**



① GND (ground) 2 Power of camera ③ Video input ④ Audio input



Turn the switch from up to down can switch the image

Port 6/MIRROR



Port7/POWER

display from mirror to normal.

5

(5) Black to ground (GND) 6 Red to power supply Orange to reversing light <sup>®</sup> White to dimmer



**TECHNICAL SPECIFICATIONS** 

The technical specification of monitor is listed below

| Serial Number | Item                      | Specifications                                             |
|---------------|---------------------------|------------------------------------------------------------|
| +             | Display device            | 5.5" CRT                                                   |
| 2             | Deflection angle          | 70°                                                        |
| 3             | Input voltage             | 11~32V(DC)                                                 |
| 4             | Output voltage            | 10V(DC)                                                    |
| 5             | Power consumption         | Max.1A                                                     |
| 9             | Scanning frequency        | CCIR:(H)15625Hz/ (V) 50Hz<br>EIA:(H)15750Hz/ (V) 60Hz      |
| 7             | Video input               | Composite video signal 1Vp-p 750hm                         |
| 8             | Video output              | Composite video signal 1Vp-p 750hm                         |
| 6             | Horizontal resolution     | 420 TV lines at maximum                                    |
| 10            | Field resolution          | 420 TV lines at maximum                                    |
| 11            | Anti-vibration capability | 6.8G                                                       |
| 12            | Camera port               | 4-pin DIN socket                                           |
| 13            | AV port                   | RCA socket                                                 |
| 14            | Storage temperature       | -25° C~+70° C                                              |
| 15            | Operating temperature     | -0° C~+60° C                                               |
| 16            | Dimensions                | 160(W)x147(H)x143(L)mm<br>(without support and sun shield) |
| 17            | Parking dimensions        | 293(W)x268(H)x200(L)mm                                     |

56

NOTICE

œ

NOTICE The manufacturer reserves the right to change the specifications without notice.

TROUBLESHOOTING

Solve problems according to the table below

| Symptom                       | Cause                                                                      | Solution                                                                                                                                       |
|-------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Rolling image                 | Monitor(horizontal control)                                                | Replace monitor                                                                                                                                |
| Shrunk & Unstable image       | Monitor improper voltage                                                   | check the voltage of power supply                                                                                                              |
| Black image                   | Monitor improper voltage                                                   | if ok, check fuse->check power cable,<br>wires or connector(loose or broken?)<br>If all above item are ok, replace monitor                     |
| White image                   | Monitor/Camera                                                             | Check main system cable. Make sure<br>all connectors are connected properly.<br>If ok, check 4 pin DIN monitor cable. If ok,<br>replace camera |
| Blurred image                 | Fog, mud, water or ice on<br>camera lens or porthole<br>moisture in camera | Clean camera porthole. If condensation<br>or moisture is visible inside camera,<br>initiate device immediately.                                |
| Engine noise or Static lines  | Monitor                                                                    | Make sure ground and +12V DC source<br>is in solid connection. Call tech-support<br>for assistance                                             |
| No light displayed on monitor | Broken fuse or low bright-<br>ness level                                   | Check whether the fuse is broken or<br>brightness adjustment has been turned<br>to the lowest level                                            |
| No image                      | Improper plugging in<br>connector or broken system<br>connecting cable     | plug the connector properly or replace<br>the system connecting cable                                                                          |

If you still can not solve the problems, contact our tech-support engineer for assistance.

WARNING

Electrical shock or fire hazard. Do not try to service this unit yourself. Service should be handled by qualified technicians.

6

## **Display Stand**

The custom support system for the display screen model number MO557111B. Comes with monitor support and adjustment screws.





## **APPENDIX III - ASSEMBLY OF THE PIECE**



Close up of the Display, Display stand, metal head and circuit not connected to the stand.



Close up of the video cable and the metal head connected to the stand.

Cardinal Directions is powered by a single 12 VDC, 3 Amp, 120-240V auto switching power supply. Consult the wiring diagram in <u>APPENDIX I - INSTALLATION</u> for a general idea of how the elements connect.

When installing, ensure that the <u>Placement Instructions</u> have been followed carefully. If not already in place, fish the power cable ending in a female 2 pin Tyco header through the hollow shaft of the metal stand.

Once a spot has been selected you may need to attach the custom circuit to the metal head. If this is necessary consult the images in <u>Printed Circuit Board</u> to identify the relevant connection points for the various wires from the metal head. Using the reference images below, carefully attach each connector.



View of the Encoder Connector

View of Video Connectors



Side view of connectors.

Once the metal head is ready to be placed on the stand donn gloves and carefully place the ends of the large screws through the holes in the top plate on the metal stand. Consult the images below for reference. Once firmly situated, tighten the endcaps firmly so that no rattling or movement is observed when the motor is running.





Top plate on metal stand

Endcaps of metal head

## **APPENDIX IV - REPAIRS/ADVANCED MAINTENANCE**

If the Raspberry Pi is unable to successfully boot up when power is supplied it may be necessary to reimage the microSD card. A backup image can be found on a collector USB or by contacting the studio. Any standard imaging software can be used to reapply the image to the microSD card. Upon restarting with a newly flashed image the software should begin functioning automatically.

## **APPENDIX V - PACKING**

When packing this piece for shipment the metal head and display should be detached and packed separately from the metal stand. The display in particular is delicate and should be foam packed and wrapped in antistatic plastic. View the image below as an example.

\*\*\* Note that some previous versions of the artwork got packed as a whole, with support for the head. In such a case, you can use the original packing methods or choose to pack the head separately as described here.\*\*\*



The metal head and display foam-packed separately.